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Computer simulation based design processes are being extensively used in complex systems like scramjet powered
hypersonic vehicles. The computational demands associated with the high-fidelity analysis tools for predicting the
system performance restrict the number of simulations that are possible within the design cycle time. Hence, analysis
tools of lower fidelity are generally used for design studies. To enable the designer to make better design decisions in
such situations, the lower fidelity analysis tool is complemented with an uncertainty model. An approach based on
ranks is proposed in this study to aggregate high-fidelity information in a cost effective manner. Based on this
information, a cumulative distribution function for the difference between high-fidelity response and low-fidelity
response is constructed. The approach is explained initially for uncertainty quantification in a synthetic example.
Subsequently an uncertainty model for estimating the mass flow capture of air, a typical disciplinary performance

metric in hypersonic vehicle design, is presented.

Nomenclature
H, = cruise altitude
M, = Mach number
m, = mass flow capture of air
0., 6,,0; = forebody compression angles

L

HE design of any system involves tradeoff among various

options and selecting one that best meets the requirements. For
complex systems, like scramjet powered hypersonic vehicles, it is
desirable to assess the various options using a high-fidelity analysis
(HFA) that accurately evaluates the performance metrics of the
system. This requirement is critical because the thrust minus drag
margins for such vehicles are typically small. An accurate estimate of
the various performance metrics, like mass flow capture of air and
drag of the vehicle, is therefore essential for successful realization of
the design. A computer based design framework may demand a large
number of simulations employing HFA tools like computational
fluid dynamics (CFD) and finite element methods (FEM) for this
purpose. HFA tools are computationally very intensive. They are
typically used to analyze a particular configuration in great detail
rather than to evaluate a large number of configurations in the design
phase. Thus there is a restriction on the number of HFA simulations
that are possible to carry out within the design cycle time. Design
processes therefore employ computationally efficient methods
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known as low-fidelity analysis (LFA) or medium-fidelity analysis
that use simplified physics or coarse discretization and are therefore
faster but less accurate. The designer is thus confronted with the
challenge of making decisions in an environment wherein
uncertainty associated with less accurate analysis tools is ever
present, and hence there is a need for an uncertainty model that can
mitigate the effect of the lack of fidelity in the analysis.

This type of uncertainty that arises due to simplifying the level of
fidelity in the analysis is referred to as epistemic uncertainty in the
literature. Epistemic uncertainty is defined [1] as “a potential
deficiency in any phase or activity of the modeling process thatis due
to lack of knowledge.” In this paper we use the term “fidelity
uncertainty” to mean epistemic uncertainty. This type of uncertainty
may also arise when new classes of systems like scramjet powered
hypersonic vehicles are developed for the first time. In such
situations, there is a scarcity of high-fidelity information.
Probabilistic approaches to handle uncertainty associated with
low-/medium-fidelity analysis and their application in design
scenarios have been demonstrated recently. Quantification of
uncertainty using a Bayesian approach to update the uncertainty
model was proposed by Mantis [2] in the context of an aerospace
vehicle design. DeLaurentis [3] discretized probability density
function (PDF) for various confidence levels and created a response
surface model to achieve aircraft design that is robust in performance
with respect to stability and control disciplines. Charania et al. [4]
used engineering methods for various participating disciplines in
reusable launch vehicle design, together with a multiplier coefficient
that is characterized by an assumed probability distribution.
Alternative approaches that are not based on probability theory are
also being investigated to characterize epistemic uncertainty.
Agarwal et al. [3] presented an approach based on evidence theory to
quantify uncertainty in multidisciplinary design optimization for the
aircraft sizing problem. However, in this paper we continue to treat
epistemic uncertainty within the framework of probability theory.
The authors of this paper demonstrated, in [6], a probabilistic design
approach for a hypersonic vehicle. Fidelity uncertainty in a
disciplinary performance metric, mass flow capture of air, was
characterized through a Weibull distribution, using four arbitrarily
selected high-fidelity observations, and its effect was propagated
onto a system metric, namely, thrust deliverable. A design that
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maximized the system metric was sought through formal
optimization. However, there are still several issues that merit
further research.

Development of a probabilistic design process involves three
major steps, namely:

1) Construct an input uncertainty model, based on the information
available.

2) Propagate the effect of disciplinary uncertainty onto system
performance metrics.

3) Assess the system performance and make a design decision
under uncertainty.

In the studies discussed above, the focus has been on the last two
steps. An uncertainty model was assumed either on the basis of a
disciplinary expert’s recommendation regarding the prediction
accuracy of the lower fidelity analysis or on the basis of an evaluation
of the analysis tool with respect to similar applications. For example,
if the disciplinary expert declared that the lower fidelity analysis is
accurate within £10%, then a normal distribution N(1, 3.3), that is,
with normalized mean 1 and standard deviation 3.3, is assumed as the
uncertainty. However, as discussed above, a challenging situation
arises when there is a scarcity of high-fidelity information, especially
in the context of the design of a new class of vehicles. The designer is
thus faced with a dilemma about the choice of points in the design
space where high-fidelity simulations are to be conducted so as to
enable characterization of the epistemic uncertainty in the lower
fidelity analysis tool in a computationally efficient manner.

The present study seeks to address this dilemma by proposing a
method, based on ranks, to aggregate high-fidelity information in a
systematic manner. Using this information, an empirical cumulative
distribution function (CDF) is constructed to complement the use of
the LFA tool for application in a multidisciplinary design
environment. It is envisaged that the approach will enable robust
design decisions.

II. Rank Transformation Approach

This section describes the rank transformation approach to model
uncertainty in the estimation of a function. It is assumed that the
function is computationally expensive, restricting its frequent use
while searching the design space during optimization. Hence a LFA
tool that is computationally efficient is used, albeit with less
accuracy. Uncertainty therefore arises in the estimation of the
function. The concept of ranks is introduced and a method that
exploits this concept for uncertainty modeling is proposed.

A. Concept of Ranks

Ranking refers to the process of ordering a sample (say of size N)
with respect to a system performance metric. For minimization
problems, the observation with the least value receives the highest
rank (rank N) while the observation with the maximum value
receives the lowest rank (rank 1). Rank based approaches have been
mainly used in agricultural research and property valuation research.
Ranking procedures are one approach in multiple decision theory [7]
where a simple loss function (zero—one) is used and the risk is an
incorrect decision. Dell and Clutter use “judgment ordering” in [8]
and enable use of the sample mean as an estimator for the population
mean, when it is difficult or expensive to obtain the characteristic of
interest for the whole population. Cronan et al. in [9] report that for
small sample sizes, the rank regression technique produces a model
with better estimates of residential property value as compared to the
model based on the multiple regression analysis technique. However
to the best of the author’s knowledge there has been no study in the
area of modeling uncertainty based on the rank transformation
approach.

As discussed in the previous section, creating a sample of high-
fidelity information constitutes the initial step in the process of
modeling uncertainty. Instead of modeling the uncertainty over the
entire design space, a method is proposed to sequentially aggregate a
high-fidelity sample from the regions where the value of the
expensive function is potentially attractive. At a design point, the
value of the function is considered attractive if its value is relatively

lower as compared to other design points. A formal definition of the
concept of an attractive zone is given in the next section. Thus, design
points with lower response values receive higher ranks while those
with higher response values receive lower ranks. A stopping criterion
is used to limit the sample size to a reasonable number. The
reasonable number can also be specified as a computational budget.
This number is intended to be less than that demanded in a design of
experiments to create a response surface model. Based on this
information, a probabilistic model for the difference between the
high-fidelity response value and the corresponding low-fidelity
response value, defined as residual, is constructed. Uncertainty
model for the estimation of the expensive function is now defined as
the LFA tool complemented with a probabilistic model of the
residual. It may be noted that in the context of optimization
(minimization), the inaccuracy of the model in the regions where the
function is relatively higher is not of much interest. Rank
transformation of the response enables one to introduce the
preferential characteristics in the uncertainty model.

B. Notations

Let Z = F(X) denote a HFA tool that describes the system
behavior. The LFA tool is represented by z = f(X). X € D C R"
denotes the input vector for both the functions and D is the design
space in n dimensional real space R”. F(-) is the high-fidelity or
expensive function and Z is the high-fidelity response. f(-) is the
low-fidelity function and z is the low-fidelity response. X typically
describes the parameterization of the system while Z or z describes a
performance metric of the system. Then for the rank transformation
approach the following notations are adopted:

D =[a b]: for design space. This defines the space in R" over
which the function is defined.

X,,..., Xg,...,: design points in D.

Zi,...,Zg,...,. high-fidelity responses corresponding to the
design points.
Zi,...,2k,---,. low-fidelity responses corresponding to the

design points.

Sx =1{X1, .-, Xy, Xyi1s - -+ » Xy}t set of design points.

Sk ={Z1,....Zy,2n41,-- - 2yr): set of high-fidelity and low-
fidelity responses corresponding to the points in Sy (i.e., there are N
high-fidelity responses and M—N low-fidelity responses).

r;: rank of the ith response in Sg.

P;: empirical probability density at X = X in Sy.

C;: empirical cumulative probability density at X = X in Sy.

e;: Z; — z; at the point X = X;. This denotes the residual at the
point X;.

Xo=a<X, <--- <X, | <X, =b:partition of D with size p.
This divides the design space D into p levels.

fr=20<z <---<z,1 <z, = fy: partition of f(D) with size
p. This divides the range of LFA response into p levels.

f(D)=[fL fu]l:low-fidelity response space for D.

S, ={(X,z) | X e D,z=f(X)}: low-fidelity system state
descriptor. This defines a set of design points where the system
behavior is described using its low-fidelity response, as modeled by
JX).

Sy ={(X,2)| X € D,Z=F(X)}: high-fidelity system state
descriptor. This defines a set of design points where the system
behavior is described using its high-fidelity response, as modeled by
F(X).

S, ={(X,2)| (X,Z) € Sy and Z < z;}: system state descrip-
tor in the attractive zone. The attractive zone is the set of high-fidelity
responses belonging to Sy that are less than a specified threshold
response. In this study, the specified threshold response is the low-
fidelity response z; corresponding to the first partition level of the
low-fidelity response space.

ny: cardinality of S, indicating the number of observations of the
sample in the attractive zone.

The expensive function is estimated using the model,
Z~z7+4+U(Z), where U(Z) is a probability distribution of the
residual and represents the epistemic or fidelity uncertainty in the
estimation of Z when a LFA tool is used instead of the HFA tool.
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Table 1 Univariate bimodal function

Function Design space Attractive zone
High fidelity Z=X-05X-2)(X—-4)(X—-3.25+10 D =[05] Z <128
Low fidelity z=1.8785X% —7.8888X + 15.7313 D =[05]

C. Rank Transformation Approach

The various steps involved in the rank transformation approach are
now discussed. For ease of explanation, a synthetic example is used
to illustrate the various steps. The HFA is a univariate bimodal
function and is assumed to be computationally expensive. The LFA
is a quadratic unimodal function. This is assumed to be
computationally efficient and may be used a large number of times
in simulation. The functions are defined in Table 1.

1. Initial Sample

Assume that to begin with there are K (K > 2) high-fidelity
responses or observations available. A minimum of two responses is
required because we need to order the responses. However, in this
study, we have chosen K = 3. This enables a smoother transition of
the responses between the attractive and nonattractive zones. Typical
data consisting of three initial points are shown in Table 2.

2. Augmentation of the Sample with Low-Fidelity Responses

LFAs are now performed at uniformly gridded points in the design
space to augment the sample. Augmenting is done to encourage
global representation of the range of the function and the design
space, during ranking. In case of multimodal functions this also helps
to avoid aggregating high-fidelity information that is restricted to a
local valley. However, caution must be exercised to ensure that the
number of low-fidelity responses in the sample is not significantly
higher as compared to the number of high-fidelity responses.
Otherwise the trend of the function behavior as predicted from the
sample will be dominated by the LFA tool. Table 3 shows the data
after the addition of six low-fidelity observations. It may be argued
that low-fidelity responses may be added sequentially. However,
adding one low-fidelity response at a time may not encourage global
representation in the sample, especially in the initial stages when the
available number of responses is small.

3. Rank Transformation of Responses

The high-fidelity and low-fidelity responses are combined to form
the dataset Sk and the elements of the set are sorted in a descending
order. The responses are now transformed by assigning ranks to them
in a serially increasing manner, starting from 1 to the value of the
maximum rank. The maximum rank has a value equal to M, the total

Table 2 Typical sample of high-fidelity responses

S. no. X zZ

1 0.35 12.61
2 2.86 10.90
3 4.64 19.72

Table 3 Typical augmented data

number of high-fidelity and low-fidelity responses. Thus the
response with the minimum value receives the maximum rank while
the response with maximum value receives a rank of 1. If a response
value occurs more than once, then the same rank is assigned to all its
occurrences. A typical rank transformation of the responses is shown
in the fourth column of Table 4.

4. Mapping of the Ranks onto Design Space

The ranks for the responses are now mapped to their
corresponding design points in Sy. Thus the design points are now
given an additional attribute, namely, the rank that defines its
preference for selection.

5. Computation of the Empirical PDF and CDF of the Design Space

The design points, together with their associated ranks, are now
sorted in an ascending order with respect to their respective values.
The empirical probability density of the ith point is then computed as
the ratio of its rank to the summation of the ranks of all the points, and
is given as

Ti
Z?il r; M

Because the points are sorted in ascending order, the empirical
cumulative density of the ith point in the table is the ratio of the sum
of ranks of all the points above it to the total summation of ranks and
is denoted as

P =

i r;—0.5
Ci = —Zj_l M/ (2)
YL

The factor 0.5 in Eq. (2) is used for a continuity correction to connect
the first point and last point in the sample, respectively, with the
lower and upper bounds of the design space. Piecewise linear
interpolation gives the cumulative density at any other point in the
design space. Empirical PDF and CDF for the design space are thus
constructed. The fifth and sixth columns of Table 4 depict the
probability density and cumulative density values of the design
points. The lower and upper bounds of the design space will now,
respectively, take 0 and 1 as their empirical CDF values.

6. Selection of a New Point for HFA Evaluation

The CDF of the design space is now employed to sample a new
design point where the expensive function is evaluated. It is desired
to select the new design point such that the function value is lower
than any of the high-fidelity responses available currently in the
sample.

Table 4 Typical data showing rank transformation of responses and
cumulative probabilities of design points

S. no. Sx Sk S.no. Sy Sz Rank Probability density Cumulative probability
1 0.35 12.61 4 0.00 15.73 3 0.06 0.05
2 2.86 10.90 1 035 1262 5 0.11 0.16
3 4.64 19.72 5 1.00 972 7 0.15 0.32
4 0.00 15.73 6 200 746 9 0.20 0.52
5 1.00 9.72 7 2.86 1090 6 0.13 0.65
6 2.00 7.46 2 3.00 897 8 0.17 0.83
7 3.00 8.97 8 400 1423 4 0.08 0.92
8 4.00 14.23 3 464 1972 2 0.04 0.96
9 5.00 23.25 9 5.00 23.25 1 0.02 0.98
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Table 5 Typical high-fidelity sample after selecting one point from the

CDF of design space
S. no. X z
1 0.35 12.61
2 2.86 10.90
3 4.64 19.72
4 0.87 6.86

To sample from the distribution, first a random number, u is
generated from uniform distribution U[0, 1]. Note that the CDF value
also varies in a monotonic manner from O to 1. Performing piecewise
linear interpolation on the data, given in Table 4, for the cumulative
distribution value u yields the new design point. This procedure of
generating random variates is referred to as the inverse-transform
method [10]. Because the design points with a lower function value
have higher ranks and therefore a higher probability value, the CDF
of the design space favors the selection of a new point from the
regions where the function value is relatively lower. However, since
the distribution value u is chosen randomly, there is also a chance,
with low probability, that the new design point has a higher function
value. Thus there are now K + 1 high-fidelity observations. An
updated table is shown at Table 5.

Steps 2, 3, and 4, that is, augmenting the sample with low-fidelity
observations, ranking the collection of the responses, and mapping
the responses onto the design space are repeated to update the CDF of
the design space. The updated distribution is used for selection of the
next design point for high-fidelity evaluation. This process is
repeated till the desired number of high-fidelity responses is
aggregated. Alternatively a heuristic stopping criteria described in
the next section can be used.

7. Stopping Criterion

A heuristic criterion is used to decide when to stop the process of
collecting high-fidelity information. The CDF for the residual is
examined after every update and if the variation between the
successive trials is negligible, the process is terminated.

Let F;(e) and F;,(e) be the CDFs of residual e for the ith and
(i + Dth trials or updates, respectively. The variation in successive
CDFs is expressed as follows:

d=m§1x|F,»+|(€)—Fi(e)| 3

The variation is considered negligible when d < &, where ¢ is a small
number compared to 1. Thus, there are N + K high-fidelity
observations when the process is terminated after N trials are
performed.

D. Limitations of the Rank Transformation and Means to
Circumvent Them

The rank transformation procedure described in the previous
section has the following limitations:

1) The procedure may be sensitive to the initial sample and
consequently influence the selection of subsequent high-fidelity
responses. For example, if the initial design points are such that their
response values are not significantly different from each other, the
new point selected would also have greater probability of having a
response value in the same range. However, it is desired that initially
the entire range of the LFA response is represented.

2) Because the inverse transformation for selecting a new design
point is random, there is a possibility of a clustering of the design
points. This depends on the nature of the CDF of the design space. If
the successive values of u are close, the corresponding random
variates obtained from inverse transformation may yield design
points that are within a close neighborhood. It is desired to avoid
points that are spatially close to each other.

The first limitation can be largely circumvented by starting with an
initial sample that spans not only the entire design space but also the
range of the response. A strategy based on stratification is adopted to

implement this. The second limitation is addressed by defining a
minimum distance criterion.

1. Stratification Algorithm

Stratification refers to partitioning or coding the range of the
design space D and the range of the response space f(D) into K
number of levels or strata with the following properties:

X, =1i,iff X;_; <X < X;, and

z,=10iffz;_, <z=<z;i=1,2,...,K.

A typical system state descriptor S; = (X, z) is coded as (X, z,)-

Each level can be interpreted as an isocontour. Our purpose is to
choose the initial points such that all the strata in X and z are
represented, at least once. Thus, if K points are chosen, then, each
point should uniquely represent a strata in X and z. This requirement
can be formulated as an assignment problem (or an integer
programming problem), in Boolean space. However, in the present
study this is implemented as described below. For the synthetic
example, the process can be initiated with two initial observations.

The entire design space is uniformly gridded into a large number
of points and a LFA tool is used for evaluating the response at each of
the grid points. Typical representation for 15 grid points is shown in
Table 6a). The grid points and the corresponding response values are
then coded or stratified according to the definition above. A
stratification table of coded values is thus set up. Table 6b) illustrates
this process for three stratification levels. A consequence of the
stratification is that the design points falling in the same strata lose
their distinct identity, resulting in duplicate points that do not possess
any additional information. For further analysis, such points are not
retained in the stratification table. Table 6c) highlights the data after
deletion of such points. A frequency table indicating the number of
occurrences of X and z; is defined and a typical result is shown in
Table 6d). Strata level corresponding to the maximum number of
occurrences either in X; or z; is identified and a point from the set of
coded values corresponding to this strata level is selected. Any tie
that occurs is resolved randomly. Other points having the same
stratification identity either in support space or in the response space
are removed. For example, Table 6d) shows that the maximum
number of occurrences is three for both z; and X,. We choose to
select the point at serial no. 6 in Table 6¢). Subsequently all the other
entries in Table 6¢) having strata level three either in X or z; are
deleted from the table. An updated stratification table is illustrated in
Table 6e). The process of defining the frequency table and selecting a
point corresponding to the maximum frequency is repeated for the
specified number of strata levels. This results in K distinct coded
design points whose corresponding response codes are also distinct.
An illustration of the updated table after selecting the second point is
shown in Table 6f). Table 6g) summarizes the selected strata levels
for the design space points and the corresponding coded response
levels. The selected stratified levels are then mapped back to the
physical domain. For each strata level, there exist multiple design
points that satisfy the mapping. The points may be chosen randomly.
At these initial points the expensive function evaluations are carried
out. For example, the entry at serial no. 3 in Table 6g) corresponds to
adesign point in strata level 2 with its response in strata level 1. In the
physical domain, the entries at serial nos. 610 of Table 6a)
correspond to these strata levels and any one of these points is
randomly selected.

Thus an initial sample of size K is aggregated through
stratification.

2. Minimum Distance Criterion

Inverse transformation of the cumulative distribution function to
select the new design points can sometimes result in the new point to
lie within the neighborhood of existing points. To avoid this, the L,
norm of the new point with respect to the existing points is calculated.
HFA is performed only if the norm is greater than a specified
tolerance bound; otherwise another point is selected from the
distribution. L, is defined as the absolute difference between the
coordinates of two design points in Sy. The tolerance bound is given
as a fraction of the range of the design variables. In an engineering
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Table 6 Typical data for stratification

S. no. z X Zs X
a) Physical domain data
1 15.73 0.00
2 13.15 0.35
3 11.05 0.71
4 9.43 1.07
5 8.29 1.42
6 7.63 1.78
7 7.45 2.14
8 7.75 2.50
9 8.52 2.85
10 9.78 321
11 11.51 3.57
12 13.73 3.92
13 16.42 4.28
14 19.59 4.64
15 23.25 5.00
b) Coded data
1 2 1
2 2 1
3 1 1
4 1 1
5 1 1
6 1 2
7 1 2
8 1 2
9 1 2
10 1 2
11 1 3
12 2 3
13 2 3
14 3 3
15 3 3
c¢) Coded data after deleting duplicate points
1 1
2 1 2
3 1 3
4 2 1
5 2 3
6 3 3
d) Frequency of coded data
Level 1 3 2
Level 2 2 1
Level 3 1 3
e) Coded data after selecting first point
1 1 1
2 1
3 2 1
f) Coded data after selecting second point
1 1 2
g) Summary of coded data selected for three levels
1 3 3
2 2 1
3 1 2

design environment, the tolerance bound may be set based on a
designer’s intuition on the sensitivity of the function value with
respect to the design variables. An approximation of this measure
may be obtained using the LFA tools.

E. Uncertainty Modeling

The first step of aggregating a sample of high-fidelity responses is
now complete. Residual, denoted by e, is estimated by taking the
difference between the high-fidelity response Z and the
corresponding low-fidelity response, z, that is, ¢ = Z — z. Based
on this information, a CDF for the residual is constructed. This
distribution characterizes the epistemic uncertainty or fidelity
uncertainty.

Diagnosis of the trajectory of the residues with respect to the low-
fidelity response enables one to infer whether or not the residues are

correlated with low-fidelity response. In case the trajectory exhibits a
random path, it is inferred that the differences are random. On the
other hand, a systematic variation in the trajectory exemplifies a
correlation between the low-fidelity and the high-fidelity responses.

1. CDF for the Residual

The residuals for the N + K high-fidelity responses are sorted in
ascending order with respect to their values. Homogenous
distribution, for the residual, is assumed for computing the
probability distribution U(Z). The cumulative density for the ith
residual is defined as

(i—0.5)

Cie) = N+K '

i=12,....N+K )

The lower bound of the residues is defined as the minimum value of
the observed residues decremented by one unit. Similarly the upper
bound of residue is defined as the maximum value of the observed
residue incremented by one unit. Alternatively, the slope based on
the first two residual values can be extrapolated to yield the lower
bound. Similarly, the slope based on the last two residuals is
extrapolated to yield the upper bound. Cumulative densities of 0 and
1 are assigned, respectively, to the lower and upper bounds. A fit for
this data will give a smooth representation of empirical CDF for
U(Z). This type of distribution is referred to as a nonparametric
distribution.

The CDF is the characterization of fidelity uncertainty and the
HFA value for any design point is predicted as Z=z+U (Z), where
7 is the predicted value for Z. Residuals may be sampled from the
distribution U(Z) and propagated through another analysis to
characterize uncertainty in system level metrics. Also residual, ¢ o5,
for u = 0.95 helps to predict with 95% confidence that Z < z 4 e os-

2. Restricted CDF of Residue for the Attractive Zone

It may be recalled that using the LFA as a guiding tool, the range of
the response was stratified into three contour levels. The zone defined
by the first contour level is designated as the attractive zone, because
the response value corresponding to the first level is smaller as
compared to that for the second and third levels. In the context of
minimization, we are interested only in those high-fidelity
observations that are contained in the first contour level. Hence,
the N + K responses are screened to retain only those responses that
are within the attractive zone. The cumulative distribution function
of the residual for the attractive zone is constructed in a similar
manner as described in the previous section. It may be noted that the
uncertainty bounds of the residual will be typically lower than that
obtained in the previous section and hence the estimate of the
expensive function is not unnecessarily conservative. This is
consistent with the philosophy to create an uncertainty model that is
more appropriate in the regions of interest, rather than trying to
characterize the uncertainty for the entire design space.

F. Verification of Algorithm

In the above procedure, the new design point for high-fidelity
estimation has been chosen randomly using inverse transformation
of the cumulative distribution function of the design space. Hence the
repeatability or robustness of the algorithm needs to be verified by
conducting a large number of simulations and examining the results.
Verification is based on the following criteria:

1) The probability of the number of observations in the attractive
zone should be nontrivial with at least 95% confidence.

2) The empirical cumulative distribution of the residual is
examined to check if the same type of distribution is obtained in most
of the simulations. A criterion similar to the one defined in Eq. (3)
above may be used to check the similarity of distribution. The metric
d is computed for all pairs of CDFs obtained through the Monte Carlo
simulation and is given as
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d,-j=|F,-(e)—Fj(e)|; i=1,2,...,ns; j=12,...,ns
®)

where ns is the number of simulations and
d = max(d;;) (6)

If d < &, where ¢ is a small number compared to 1, then the CDFs
may be considered to be similar.

3) The coefficient of variation [11] cv, defined as the percentage
ratio of standard deviation to mean, is computed for the lower and
upper bounds of the residual (when the mean is not 0) from the CDFs
generated in Monte Carlo simulation. The algorithm can be
considered to be stable if the coefficient of variation is less than 33%.
The value 33% is a heuristic criteria suggested by a statistical expert.

III. Uncertainty Quantification for Synthetic Example

Results illustrating the performance of the above algorithm are
presented initially for a univariate bimodal function defined in the
previous section. Figure 1 shows the high-fidelity and low-fidelity
function contours. It may be noted that the function has a global
minima at X = 1.05 and another local minima at X = 3.75. It is
desired to construct an uncertainty model that can complement the
LFA tool. The uncertainty model is expected to enable robust
prediction bounds on the function value at the design points where
the HFA values are lower. Robust prediction here means that, if an
actual HFA is conducted at the point, the probability of function
value Z being lower than the predicted upper bound is high.

A LFA tool is used to obtain a low-fidelity system state descriptor
S at 15 uniformly distributed design points in the design space D. S,
is stratified into three levels and three design points, one from each
level, are selected based on the stratification algorithm discussed
previously. The range of the variation of LFA response is about 16
with a minimum value of about 7.5. The first stratification level is
then considered as the minimum value plus 1/3 of the range of the
LFA response. Aninitial sample of three high-fidelity observations is
thus obtained. The threshold response z; for defining the attractive
zone corresponds to the first stratification level and its value is
defined in Table 1. Subsequently, 10 high-fidelity simulations were
carried out at the design points suggested by the rank transformation
approach. During aggregation of the sample, the number of LFA
responses is twice the number of HFA responses available in the
sample at that stage. The symbols depicted in Fig. 1 represent the
selected design points. The initial points selected by stratification are
distinguished by the symbol *. It can be observed that though the
LFA tool is unimodal, the algorithm has selected design points near
both the modes of the high-fidelity function and three points out of a
sample size of 13 are in the attractive zone.

The CDF for the design space is shown in Fig. 2. It can be noticed
that when X is between 0 and 1, the probability of selecting a point
from this distribution is 0.2. However, when X is between 1 and 2, the
probability of selecting a point is about 0.4. Recall that the function
has a global minima at X = 1.05. It can therefore be inferred from the
result that CDF of the design space favors selection of the design
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Fig. 1 High-fidelity and low-fidelity contours with selected design
points.
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Fig. 2 Cumulative distribution function of design space.
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Fig. 3 Cumulative distribution function of residual.

points from the regions where the function is attractive. Similarly, the
probability of selecting a point from the region X greater than 4 is less
than 0.02. Referring to Fig. 1, it can be noticed that for X greater than
4 the value of the HFA function Z is higher as compared to the region
when X is between 1 and 4. This demonstrates that the algorithm has
enabled the construction of the distribution function such that design
points with high function value have a low probability of getting
selected.

The CDF of the residual based on the total sample of high-fidelity
information is depicted in Fig. 3. The lower and upper bounds of the
residual from the CDF are used to predict the function F, as shown in
Fig. 4. It can be seen that the uncertainty has been characterized over
most of the design space. Using the predicted upper bound values in
an optimization exercise, where the function F' is to be minimized,
will always ensure that the HFA value is lower than the predicted
value. It may be noted that the motivation of the exercise is to make a
robust prediction of F, using few HFA simulations, and not actually
try to find the minimum of F. Figure 5 shows the restricted CDF of
the residual based on restricting the sample to the HFA observations
that are within the attractive zone. The lower and upper bounds from
the restricted CDF are now used to predict the function F. It can be
seen from Fig. 6 the uncertainty in the estimation of the function is
less conservative, as compared to the result shown in Fig. 5, near the
two valleys of the function.
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Fig. 4 Uncertainty in estimation of expensive function.
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Fig. 5 Restricted cumulative distribution function of residual.
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Fig. 6 Uncertainty in estimation of expensive function using restricted
CDF.
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Fig. 7 Histogram of number of hits in the attractive zone.

Results of Monte Carlo simulations are shown in Figs. 7-10. One
hundred simulations were performed and in each simulation the rank
transformation approach was applied to yield a sample of 13 HFA
observations. From Fig. 7, we can observe that only three simulations
show that there are no points in the attractive zone. In other words, 97
simulations out of the total 100 simulations performed record at least
one sample in the attractive region. Hence, the nontrivial probability
of the number of observations in the attractive zone is 1/13 with 97%
confidence. Figures 8 and 9 show that the CDF for the design space
and residual exhibit similar characteristics in most of the simulations.
The coefficient of variation for the bounds is tabulated in Table 7. It
can be noticed that the lower bounds of the residual have a coefficient

Cumulative Probability

Design Variable, X

Fig. 8 Cumulative distribution function of design space for various
simulations.

Cumulative Probability

-% -5 0 5 10 15

Residual
Fig. 9 Cumulative distribution function of residual for various
simulations.

Cumulative Probability

% -4 2 0 2
Residual

Fig. 10 Restricted cumulative distribution function of residual for
various simulations.

of variation less than 33%. However, the upper bound of the
restricted CDF, in Fig. 10, is significantly greater than 33%.
Increasing the value of the threshold enables more numbers of the
aggregated responses to fall within the attractive zone. This helps to
reduce the coefficient of variation in such situations.

The effect of sample size on the CDF for a residual is shown in
Fig. 11. Trial 1 refers to the sample with the initial three points
selected based on the stratification algorithm. From the results it can
be observed that the CDF of the residual exhibits negligible variation
for trial numbers more than 10. For example, in trial no. 5, the value

Table 7 Metrics from Monte Carlo simulations of univariate bimodal function

Residual Restricted residual
Lower bound Upper bound Lower bound Upper bound
Mean -3.70 5.70 —3.11 —0.59
Standard deviation 0.49 2.35 0.50 0.36
Coefficient of variation, % 13.20 41.20 16.00 60.00
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Fig. 11 History of cumulative distribution function of residual.

of CDF is 0.81 when the residual is 6. In trial no. 10, for the same
value of residual, the corresponding value of CDF is 0.89, while in
trial no. 15, itis 0.91. Thus, when the residual is 6, the variation in the
value of CDF is about 0.08 between trial nos. 5 and 10, and the
variation reduces to about 0.02 between trial nos. 10 and 15. Hence
we may limit the size of the sample to 10.

In the next section the method is applied to quantify uncertainty for
a typical disciplinary metric in hypersonic vehicle design.

IV. Uncertainty Quantification of a Typical
Disciplinary Metric in Hypersonic Vehicle Design

A scramjet powered hypersonic vehicle typically exhibits a highly
integrated airframe engine. A generic representation of such a
vehicle is shown in Fig. 12. Mass flow capture of air is a critical
disciplinary performance metric needed as input in the design of the
intake. The design of the forebody largely dictates the mass flow
capture of air of the configuration and the intake entry conditions. At
the same time the forebody has a strong influence on the body
aerodynamics and also affects the sizing of the vehicle. Because the
flow past the forebody is dominated by the presence of strong shocks
and viscous phenomena, a CFD code is ideally needed for calculating

the disciplinary metrics. The computational demands of such codes
allow only a few numbers of high-fidelity simulations in the design
environment. Hence an LFA tool is used. However the fidelity
uncertainty in the estimation of the performance metric affects the
entire downstream design of the propulsion flowpath. Thus, it is
important to quantify the uncertainty in the estimation of mass flow
capture of air to enable a robust prediction. In the context of this

1 /
93 L mid Lab

Fig. 12 Generic hypersonic vehicle configuration.



418 UMAKANT ET AL.

example, robust prediction would mean that the HFA value should
always be higher than the predicted lower bound.

In the present study, the forebody is assumed to have three
compression ramps with a body width of 0.8 m. The design variables
are the three compression angles and each of these angles is allowed
to vary between O and 6 deg. The rank transformation approach is
thus now applied in a three-dimensional space. The intake entry
dimensions are 0.240 m x 0.500 m. The freestream conditions are
as follows: M, = 6.5, H_ise = 32.5 km, and @ =4 deg. The rank
transformation approach described in the previous section is used to
construct the uncertainty model. Because the thrust deliverable is
directly proportional to the mass flow capture of air, it is desired to
select design points that maximize this metric. The high-fidelity
analysis tool is an inviscid CFD based model whereas the low-
fidelity analysis tool is based on oblique shock theory.

Stratification is carried out for three levels and an initial sample of
three design points is selected. The LFA value of function
corresponding to the first level is 10.8, and this value is set as the
threshold for defining the attractive zone. In this application, it was
observed that the HFA values are always lower as compared to the
LFA values. If the bias is large, then there may not be any points in
the attractive zone. To avoid this, a constant is included in the LFA
tool. This constant is defined as Z — 7, where Z denotes the mean of
the initial HFA sample obtained by stratification and z denotes the
mean of the corresponding LFA values.

Because visualizing the CDF in three-dimensional space is
difficult, results pertaining to design space are not presented.
Figure 13a shows the CDF of the residual. Using the lower and upper
bounds of the CDF defined in Fig. 13a, the disciplinary metric is
computed for the complete design space. For a given value of mass
flow capture of air based on the LFA tool, the corresponding
tolerance bounds are shown in Fig. 13b. It can be observed from the
simulation results that the HFA values are always higher than the
predicted lower bounds thereby enabling robust predictions. For
system studies, the uncertainty model can be used to propagate the
disciplinary uncertainty onto a system level metric and enable robust
design decisions.
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The refinement in the CDF based on the attractive zone is shown in
Fig. 14a. The corresponding uncertainty bounds in the estimation of
m, are shown in Fig. 14b. It can be observed that the width of the
tolerance bounds is now less conservative in the regions where the
response values of m,, are higher.

It may be noted that for a design problem in three dimensions, 10
high-fidelity simulations at the design points suggested by the rank
transformation approach together with an initial sample of three
observations having been used to develop the uncertainty model.
Developing a surrogate model for the same performance metric
required 32 high-fidelity simulations as described in [6]. Thus, for the
purpose of making robust predictions in the design phase, the
suggested approach requires fewer HFA observations. However, it
may be noted if higher design cycle time and higher computational
budget are permissible, the surrogate model described in [6] offers
better prediction capabilities.

V. Conclusions

A rank based approach has been developed to enable
quantification of uncertainty in disciplinary performance metrics
when a low-fidelity analysis tool is used instead of a computationally
expensive analysis tool. Rather than relying on subjective opinions
regarding the accuracy of the low-fidelity analysis tools, the
proposed method seeks to aggregate a limited number of high-
fidelity information in a sequential manner. Based on this
information, an empirical cumulative distribution function for the
residual is constructed. Results for a synthetic example demonstrate
the validity of the method. The approach has been subsequently used
to develop a cumulative distribution function to represent the
uncertainty in the estimation of a typical disciplinary metric in the
design of a hypersonic vehicle.

The method can be extended to develop similar uncertainty
models for other performance metrics. The models can be
incorporated in the system synthesis design tool and used in a
multidisciplinary design optimization environment for a hypersonic
vehicle to enable robust design decisions.
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